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Abstract. The inverse participation ratio and fractal dimension are calculated for states of a 
tight binding model of a two-dimensional non-interacting electron gas in a normal magnetic 
field with a random potential. Interest is concentrated on the most extended states. The 
results are compared with the literature on the fractal nature of the extended states of the 
continuum version of the model. Substantial differences are found between the behaviour 
of the fractal dimension of the models. The relevance of the findings to the quantum Hall 
effect is discussed. It is concluded that arguments linking the behaviour of the fractal 
dimension of the most extended state to its supposed capacity to carry all current for the 
subband in the continuum model are not essential for understanding the quantum Hall effect. 

The inverse participation ratio (IPR) has been used extensively as a measure of the degree 
of localisation of electron states caused by a random potential, beginning with the work 
of Bell and Dean (1970). Since then it has been used as a localisation criterion in both 
numerical and analytical calculations. For infinite systems it is a strong localisation 
criterion. It has been shown by Kunz and Soulliard (1980) and Johnston (1981) that the 
IPR is non-zero only if there is no continuous part to the spectrum of the Hamiltonian 
operator in the energy range under consideration. 

In this paper the IPR will be calculated numerically for finite systems. The Hamiltonian 
has only a discrete spectrum and so the existence of extended states can only be surmised 
by extrapolation. The inverse participation for a state is defined in a finite system as 

for a finite continuous subset 52 of the d-dimensional Euclidean space. I), is the a th  
normalised eigenstate and E,  is the a th  eigenvalue of the Hamiltonian defined on A or 
52, with the appropriate boundary conditions. 
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It has been noticed that there is a correspondence between P ( E J  and the second- 
order Renyi entropy (see Paladin and Vulpiani 1987). From this it is evident that the 
natural fractal dimension associated with the IPR is the second order Renyi dimension 

where L is the length of A or Q. Notice that this dimension is equivalent to other fractal 
dimensions, which may be defined, if the fractal structure associated with the state is 
homogeneous. 

The specific problem which will be addressed in this paper is the nature of the states 
of the two-dimensional non-interacting electron gas moving in a random potential with 
a magnetic field applied normal to the surface. This is a model which has often been 
invoked to explain the quantum Hall effect (QHE). Two versions are usually considered: 
one where the configuration space is a continuum and the other where it is a lattice. 

Kramer et a1 (1988) and Ono et a1 (1989) have calculated D2 (their d * )  for a state at 
the centre of the first Landau band of the continuum model. Aoki (1986) has calculated 
the Hausdorff dimension for the same state in the same model although he does not 
discuss the effect of the ad hoc  cut-off parameter he uses to construct his fractal set. 

The point of major interest here is the possibility that the increase in dimensionality 
of the state at the centre of the band, as the disorder is increased, explains how this 
state carries extra current and so compensates for the states which become localised. 
Universality is invoked to imply that the effect should be independent of the microscopic 
details of the system (Kramer et a1 1989). 

It is well known that the tight binding model can also account for the properties of a 
two-dimensional electron gas in the QHE regime (Schweitzer et a1 1984, 1985, Gud- 
mundsson et a1 1988). In this paper results will be presented for P(E,) and D2(E,) on 
the tight binding model. These results will be compared with the results obtained for the 
continuum model (Aoki 1986, Ono et a1 1989). 

The tight binding Hamiltonian for the two-dimensional electron gas in the Landau 
gauge,A = (0, Bx, 0), is defined as (Schweitzer et a1 1984) 

(&)(X,Y) = V(X?Y)dX7Y) + d x  + 1 7  Y) + P(X - 17Y) 

+ exp( -i2nxB)q(x, y + 1) + exp(i2nxB)q(x, y - 1) (4) 

where 9 is some vector on the lattice A, and with e = h = m = 1 the magnetic field B is 
expressed as the number of flux quanta per unit lattice cell. The lattice is chosen to be a 
square with unit lattice constant and L sites on each side. The potential V(x, y) is taken 
to be a set of identically distributed independent random variables on the lattice sites. 
The uniform distribution is used with width W .  Periodic boundary conditions are applied 
in both directions. Only magnetic fields which make the exponential factors com- 
mensurable with the lattice periodicity are considered. The dimension D 2  (see (3)) of 
the zero-disorder states is 2, and this is independent of the boundary conditions, which 
is not the case for the continuum model where D 2  is 1. The case of periodic boundary 
conditions is subtle because of the degeneracies but there is a symmetry breaking in 
the representation of the eigenstates which means that D 2  is 1 for each state in the 
representation (Grumm 1984). This is the first difference to be noticed between this 
model and the continuum model and it will be important in the discussion later. 
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Figure 1. The inverse participation ratio averaged over intervals A E  = 0.05 is shown for the 
entire first magnetic subband. The magnetic field is B = b, the disorder strength W = 1 and 
lattices of size L = 5 ,  10, 15,20,25,30, 35 have been used. The number of realisations for 
the disorder potential are 10000(5), 1000(10,15,20), 100(25), SO(30) and lO(35). 

The IPR is obtained by diagonalising the Hamiltonian matrix numerically, finding the 
complete set of eigenvectors and constructing P(E,) for each of them using (1). Shown 
in figure 1 is the IPR averaged over the Neigenvalues contained in an energy interval A E  

calculated in the first subband for various lattice dimensions L ,  magnetic field B = 8 and 
for disorder of strength W = 1.0. Notice that the energy of the smallest (P)AE changes 
with the size of the lattice but seems to stabilise for L greater than 20. The averaged IPR 
for energies near the centre of the band decrease with increasing L whereas away from 
the centre the IPR remains almost constant (lower energy side) or first decreases then 
increases again (higher energy side). It makes extrapolation difficult if the IPR scales 
non-monotonically with the length. Since the choice of the energy interval A E  for 
averaging is arbitrary, only an arithmetic average of the most extended state of the 
first Landau band, taken over different realisations of the disorder potential, will be 
considered in what follows. 

In figure 2 an attempt at extrapolation of the IPR P of the most extended state in the 
first subband is shown as a function of L-* for various values of the disorder parameter 
W .  Only for almost zero-disorder W do the extrapolations go unambiguously to zero, 
which indicates an extended state. However, for W larger than about 0.1, this extra- 
polation gives only localised states. It should be noted that W -- 0.1 is a weak disorder 
for which the broadening of the density of states is very small and the Landau bands 
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Figure 2. The IPR of the most extended states in 
the first subband plotted against 1/L2 for disorder 
parameters W = 0.1, 1 and 5. Once again, 
the magnetic field E = 5. The number of realis- 
ations are 100(15,20,25,30), 10(35), and the 
error bar is the standard deviation. 
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Figure 3. The logarithm of the most extended IPR 
in the first subband plotted against In(L). The 
straight line at high L allow an estimation of D, to 
be made. W = lo-', 0.1, 1, 5 ,  7.5, 10 and E = $. 
The number of realisations are as in figure 2. In 
the inset an estimate of the Renyi dimension Dz is 
shown as a function of the disorder strength W .  

remain well separated. Unfortunately the equivalent data for the continuum model have 
not been published. 

Another method of extracting asymptotic properties of the most extended states is 
to estimate the Renyi dimension D2(E,) .  Plotted in figure 3 is the negative of the 
logarithm of the smallest IPR P against the logarithm of L. From this plot D2 can be 
estimated as a function of W. The results are shown in the inset. For disorder strengths 
W = 7.5 and W = 10 a good straight line for large L is not obtained. In this case the 
subbands already exhibit an appreciable overlap. It is probable that D2 is much smaller 
than 1.0, even zero. However, for disorder strength W < 7.5 a saturation of P at system 
sizes larger than L = 35 can also not be excluded. A value of D2 greater than zero 
indicates that the state is extended. Note that the results for the extrapolations obtained 
from figure 2 contradict those from figure 3. This means that great caution must be 
exercised in discussing these results because at least one extrapolation must be giving 
false results. The study of larger systems could in principle decide this question. Then, 
however, a better suited method for diagonalising the Hamiltonian matrix, perhaps a 
Lanczos algorithm, must be applied. It is possible that an asymptotically localised state 
may have stable fractal structure associated with a range of length scales, although D2 
is zero in the limit L --$ W. Similar phenomena are known in other areas where the fractal 
concept is employed. For example, consider percolation on a lattice. A Hausdorff 
dimension can be associated with the percolating backbone but only on length scales 
orders of magnitude larger than the lattice constant. 
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As seen from a calculation of D2 for the most extended state in the first subband, the 
main difference between the continuum and lattice models is that a small amount of 
disorder decreases D2 in the tight binding model whereas it increases D2 in the continuum 
model. For the lattice the rate of change of D2 with disorder W is small in the range 
1.0 < W < 5.0, where D2 = 1.7 k 0.1. This agrees well enough with calculations of D2 
for the continuum model (Aoki 1986, Kramer et a1 1988, Ono et a1 1989), but in the 
discussion they give there is no indication that the dependence of D2 on the strength of 
the disorder has been considered. It is, however, clear from the results presented in this 
paper that there are important differences between the two models which means that 
universality cannot be invoked to permit the transfer of results from the continuum 
model to the lattice model. Recently, Ono et a1 (1989) observed the non-universality of 
D 2  even within the continuum model because D2 is larger for potentials of finite range 
than for the b-potential case. 

The increase of D2 with disorder for the state at the centre of the Landau band has 
been used to propose that for this reason the state can carry more current and so 
compensate for the localised states. However, this argument is not applicable to the 
tight binding model because D ,  decreases monotonically with increasing disorder, It is 
well known that one gets similar results for the Hall conductivity axy calculated with the 
Kubo formula in the continuum model (Ando 1984) and in the lattice model (strip of 
finite width: Schweitzer et a1 1985; finite systems with periodic boundary conditions in 
both directions: Johnston and Schweitzer (unpublished)). This implies that the increase 
found on D2 with disorder in the continuum model is not essential for obtaining the 
quantum Hall effect within the localisation model. 
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